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Basically Vector is a quantity having both magnitude and direction. Vector quantities
like force, velocity, acceleration etc. have lot of reference in physical and engineering
problems. We are familiar with vector algebra which gives an exposure to all the basic
concepts related to vectors.

Differentiation and Integration are well acquainted topics in calculus. In the
background of all these we discuss this chapter Vector Calculus comprising Vector
Differentiation. Many concepts are highly significant in various branches of
engineering.
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derivative of o

Let the position vector of apoint P (x, v, z) in space be
=

r=xi+yj+zk

If x, y, 2 are all functions of a single parameter t, then r  is said to be a vector
function of ¢ which is also referred to as a vector point function usually denoted as
r=r(t). Astheparameter t varies, thepoint P tracesacurvein space. Therefore

P x(t) ity (t) j+z(f)k
is called as the vector equation of the curve.

_,._}
dr’ -, _dx . dy . dz
FTERRARSR Rl PO A B r

1s a vector along the tangent to the curve at P.
If f is the time variable,

_)
= %% gives the velocity of the particle at time ¢.
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“T 0y T dr | d
and is called the acceleration of the particle at time £.

S odo 4 (4 P -
Further - [——;] = :f—f represents the rate of change of velocity v
¢

Properties

1. %{clﬁ(t)iczr_;(t)}:cl;?'(t)iczF;'(t) where ¢y, €, are
constants.

2, %(?-E?):Tr”- %{E—)Jri?a’

5 & (Pad) = Pril L OF,

where F'= E(t) and G = G(t).

If to every point (x, ¥, z) of a region R in space there corresponds a scalar
o (x, y, z) then ¢ iscalled a scalar point function and we say that a scalar field
¢ is defined in R.

Examples : 1.41:=x2+y2+z2 2. ¢n=xy223

Egto every point (x, ¥, z) of a region R in space there corresponds a vector
A(X Yy, 2) then A is called a vector point function and we say thata vector field
A’ isdefined in R.

Examples: 1. ?=x2i+yzj+z2k 2. Z):xyzi+yzj+zk

Operators (i) The vector differential operator V, read as "Nabla" or "Del”
is defined by

We now proceed to define four important quantities associated with the operators V
2
and V.
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If 6(x, y, z) is a continuously differentiable scalar function then the gradient of ¢
{grad ¢ in precise) is defined to be V.

e, grad ¢ = V¢ = ﬁq:-l-%,v+ﬂk

Obvicusly V¢ is a vector quantity.

¥ A (x. y, 2} is a continuously differentiable vector function then divergence of
A (div A in precise) is defined tobe V-4
If A = @ i+a,j+ak where a;, a), a, areall functionsof x, y, z then we have
g . d , :
divA=V. A= [B E}T pw J-(a1r+a2;+a3k)
oa aa2 O

. -2 i 1

. ivA=V. A=—+—"+=2
ie div A A By %
Clearly div A is a scalar quantity.

i f {x, y. z) is a continuously differentiable vector function then
curl of -A:}{alrl A in precise} is defined to be V x A

A= a,i+a,j+a,k where a,, a, a are all functions of x, y, z then we have

j k
- - ¢ ¢ o
curl A=V x A Bxayaz

.aafi aa2 . 303 aﬂ aaZ aal
Lt RIERI R )

CQlearly curl A isa vector quantity.

Laplanan : If & (x, 4, z) is a contiruously differentiable scalar function and
A {x, ¥, z} is a continuously differentiable vector function we can define the
Laplacian for ¢ as well as for A as follows.
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Laplacianof ¢ = V2¢ ?;g i; ¢
—

2
Laplacian of A=v74= LAl 8 A

axzaf

Note : If ¢ is a scalar function, the equation V2 = 0 is called Laplace’s equation and a
function which satisfies Laplace’s equation is called a harmonic function.
¢ &0

Alse ——= + — = O is called Laplace’s equation in hwo dimensions.
w prees

Obwiously Laplacian of a scalar function is a scalar quantity and Laplacian of a vector function
is a vector quantity.

Remark: 1. If ¢ (x, y, z) isascalar function then we have

gradd = Vo = ﬁ1+ay;+—9k
. div (grad ¢} = V - Vd
(a8 . .8 ) (., %. %
e., _[axl+a1j)+az_k) [ax1+ay}+asz
_ (), o (%), 0
Toax [ dy | dy dz | dz

Po Po P _
= =V
ax’ ¥ B]f * 3z’ ¢
Thus div (grad ¢) = VZQ) or V-V¢ = V2¢

2. The computation of gradient, divergence, curl and laplacian is a combination of the
concepts of vector algebra and partial differentiation.

Here are a few illustrations.

1. Given ¢ = x2y+yzz+z2x letusfind ¥V ¢ and fzd)

dy }+az
ie., V¢—{2ry+z)1+(x2+2yz)j+(y2+2xz)k
2
Next V2¢=a¢ 82¢ ¢

V. (6) -
o T ap T o TV

e, VN =2y+2242 = 2(x+y+z)
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2. Given A = xzyzi+yzzxj+zzxykletusfind div A, curl A" and V27
div A=V A
= (E- !+ 81% + é-ag k] (rzyzi+yzzxj+zzxyk)
“(xzyz)+*—(y2zx)+ - (2 xy)
= 2xyz+21yz+2xyz =6xyz .. div A= 6xyz
i ]k

- = d 0 d
=V - - Z X
curl A x A %y %

xzyz yzzx zzxy

=i(zzx—yzx)Hj(zzy—rzy)+k(yzz—xzz)
cull A = x (22— P )ivy(P-22)j+z (- 2)k
o PA PR 82A

2
VAaxZayz

5; (Zx‘yzi-i-yzzj-i-zzyk) + i— (xzz:'+2'ryzj+z2xk)

+ -;—z (xzyi+y2xj+2ryzk)

2yzi+ 2xzj+2xy k. v A A = 2 (yzi+zxj+ xyk)

Proof : Let 7~ be the position vector of any point P(x, y, z) on the surface
qJ (x; i, Z) =C AlSOlet

?’:x(t)i+y(t)j+z(:)k

dr’ dx . dy .

P i + It j+ = dt k is tangential to the surface at P

We have V¢z§%:’+%§j+§k

Taking the dot product of these two vectors we have
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dix QQ_E o dz
v G Yot T e dt -
Also,letuscons1der¢(x,y,z)-cwherex=x(t), =y(t) z=2(t) and

¢ is a constant.

Differentiating w.r.t ¢ on both sides we have ‘% = ( and using the concept of the

differentiation of composite functions {Total derivative) in L.HS we obtain

0 dx 9 dy 9¢ dz _
Ix dt aydf Yo A"

dr’
or V- = 0 by using (1)
i
= Vo is perpendicular to at
dr’
Smce 4} isavector tangential to the surface at P wecan conclude that V¢ isalong

the normal to the surface ¢ (x, y, z) = ¢ at P.
This proves the theorem.

Note : 1. Ob‘orously the unit vector norma!n along Vb is given by n = V¢/ | Vo |

2, Theangle between the two surfaces is defined to be equal to the angle between their normals.
If ¢, (x, 4 2} =c and o, (% ¥ z) = c, be the equations of the two surfaces then

Vo - Vo
cos g = , where 8 s the angle between the normals.

KX
If 8 = n/2 then the surfaces are said to intersect each other orthogonally.
"When 8 = /2, cos® =cos(n/2) =0 = V¢ - V§, =0

This is the condition for the surfaces to intersect at right angles.

If & (x, y, 2) is ascalar function and i is a given direction then V¢ - 7 where

7= d_)/ | 3-)| is called as the directional derfvative of ¢ along 7.

Proof : We have by definition Vé -7 is the directional derivative of ¢ along n
Now, by the definition of the dot product we have
Vo -n=|Ve| | filcosd
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A
where 8 is the angle between V¢ and n. Since | 7| = 1 we have,
Vo -n= Vo] cos®
cos 8 when 0 = 0 has the maximum valueequalto 1.If 8 = 0, V¢ coincides with
n or we can say that V¢ will be along n.
. the directional derivative is maximum along V¢ and its maximum value is
equalto | V¢ |.
This proves the theorem.

Note : Maximum directional derivative of a scalar function ¢ at a point P is also called as
the normal derivative of the scalar function at P. Normal derivative = | V¢ | at P.

i ¢ (x, y, z) = ¢ be the equation of a surface and P (x,, y,, z, } is a point on it
then the equation of the tangent plane at the point P is given by

A(x-x }+B(y-y)+C(z-2) =0
Also the equation of the normal line is given by

x—x Y-y z—z
Alz Bl= Cl where we have

(@), B, )
* (Il, yl' 21) ay {Ill leZ) z (xll yl: Zl)

)£ 4 (x, ¥, z) represents any physical quantity, the divergence of v gives the rate
at which the physical quantity is eriginating at that point per unit volume.

An Illustration : Let us suppose that a fluid is movingvf,uch that its velocity at any
point P(x, y, z) isgivenby the vector point function V { x, y, z). Consider a small
parallelopiped of volume &x 8y 8z through which the fluid is passing.

do, %, O

. . . 3
If V(x, Yy, z) = vlt+02}+v3k then div ?: 3;- + 3; + —é; gives the

total gain in the volume of the fluid per unit volume per unit time.

div V= 0 is cal\ed as the continuity equation of an incompressible fluid.

A vector V whose divergence is zero is called a "solenoidal vector”.

Curl means | rotation. A vector function V( X Yy, z) is s.aid to be "irrotational" if
curl V=10

An illustration: Let ussuppose that arigid bedy is rotating about a fixed axis through

apoint O.If @ is the constant angular velocity and v is the velocity of a particle at
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apoint P(x, y, z) of the body having the position vector »~ then we know that
- 5 , - = :

v =00 Xr. Wecaneasily show that curl v'= 2w (Refer Example - 26)

Thus curl of the velocity vector is equal to twice the angular velocity of rotation. This
is an illustration to show that "curl" is analogous to "rotation". In general we can as well
say that the curl of any vector point function will give the measure of the angular
velocity at any point.

J . d . 9, a .
lv_ax:+ay +azk-Eax:
w PR PP

—_— — = —
P ax?

2. grad $=Vo; divA=V.-A; cul A=V x A
Laplacianof ¢ = V29 = V - V¢

3. V¢ is a vector normal to the surface ¢ (x, y, 2) = ¢ and Vo / | V¢ } is the
unit vector normal to the surface,

fal
4. Directional derivativeof ¢ (x, y, z) along a given direction Dis Vo - n
Fal
where n = D'/ | o | and also directional derivative is maximum along Vo

5. If ¢ (x, y, 2) represents the temperature function then the directional
derivative of ¢ along IJ is the rate of change of temperature along

1. Let ¢ = ¥ y+2xz. V¢ is a vector normal to the surface.

WehaveV¢=%f+g§j+§k

ie., Vb = (2xy+2z)i+x0j+2xk
[VO)p 5 3y = —2i+4j+4k = 2(=i+2j+2k)

The required unit vector normal "= —I%
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2(-i+2j+2k) _—i+2j+2
V22 (1+4+4) 3

Fal
Thus n =

2, Let ¢ = xy3 2. Vb is a vector normal to the surface.
ﬁ:-fﬁ + k
By’,
ie., Vo = y z i+3xy222j+2xy3zk
]:vq;](_l 1,2y = "H12 48 = —4(i+3i-k)

Vo
[ Vel

A
The required unit vector normal n =

A —4(i+3j-k)  (i+3j-k)

Thus = = —
! V2 (1+9+1) it}

3. Let ¢ = 12y42xz+2y224
V¢ is a vector normal to the surface.

__Q 9%
Vo 1+ay;+ k

Vo = (2xy~2z) i+ (2 +4y)j+ (- 20+ 8422 )k
[VOl 5 4 _qy = 6i+8i—12k = 2(3i+4j-6k)

Fa
The unit vector normal n =

{ Vo |

Thus 1 = 2;31+4;—6k) =31+J4_‘!—6k
V22 (9+16 +36) 61

263
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4 ¢ = Pyz+axt
_9% ,, 0. 9o
V¢—ax1+ay;+azk

le, Vb= (2yz+4?)i+(Lz)j+(Py+8xz)k
[Vvo] _2’_1)=8i—j—10k
The unit vector in the direcionof 2i—j-2k is
~ 2i-j-2k _2-j-2k
Va+1+4 3
. the required directional derivative is

Vo - m = (8iej—10k) - BEIIZZ)

3
T Ve m= BURVHEDED £ (2100(22) T
5 ¢ =42’ -37 Yz
_9% . 96 9
v axl+ay;+azk

e, Vb= (4 -éxytzyi-(62yz)j+{12x? -3 P )k
The unit vector in the direction of 2:—3j +6k is
2i-3j+6k 2-3j+6k
V4+9+36 7
the required directional derivative is
n o
Vo - (it oaky - DA

M
n=

Thus v¢,;';:(8)(2)+(48);v-3)+(84)(6)=_327’_§
xz

6 b= ——0—

M

VQ:%:#%;#%!:

VECTOR CALCULUS
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ie., V¢:z{(x2+y2)1—x(?_x)'f+{_2_% z 1'+{ d )k

(P4 T2 R P
ie., v¢=z(y2'x22)i* 2‘*—"22;4 Xk
(4P (P A
1, 1 1 .
(V81 1,1y =g + 3k =50+k)
The unit vector normal in the direction of A = i—-2+k is
A i-2+k _i-2j+k
Vi+4+1 V6
Thus the required directional derivative is
AT (i-2f+k) 0-2+41 -1
V . = — - — =
bon=sGr - 2V 26
7. fey2?
o . o . df
\Y :—i
f ax1+ay)+azk
e, Vf=2pP i+ yR it P2k
[VfI(LL_l)=2f+2;'~2k=2(i+j—k) .o (1)
In order to find the direction of the tangent, let F= xi+ yj+zk
e, r=ei+(1+2sint)j+(t-cost)k
dr

i e‘i+2cosfj+(1+sint)k is the tangent vector.

We have P=(x,y,2)=(1,1, -1) bydata.
d=1;:1+2sint =1 ; t—cost = -1

Here ¢ =1 = t =0 and this value of } satisfy all the equations.

—
Thus (g—: ) = 1+2j+k is the direction of the tangent and the unit vector in
t=0
this direction is
. i+2j+k  i+25+k
T Nt+d+1 T N6

. the required directional derivative of f(x, y, z} along the tangent to the given
curveis
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Vf—r?=2(i+j~k)-g+—\,2é-mbyusing(l)
Thus Vf-r?——~—(1+2 1) = 24273

T

>> Let ¢ = xyz sothat we have,
Vo = ﬁ ~—3;+—$k=yzi+zxj+xyk
[V¢](1’1'1)=1+j+k

2

Let w:xy2+yz2+zx and we have

w—iw'—x+%%}+@£k

ie, Wy = (P +2z)i+(2xy+20)j+(2yz+ )k
{Vw]{LL})=3i+3j+3k=3(i+j+k)isthenormaltothegivensurfaceat(1,1,1)
The unit vector along 3 (i+j+k) is

3(i+j+k)  i+j+k

V2 (1+1+1). WV

" the required directional derivative of ¢ along the normal to the given surface is

2>

(i+j+k) 1+1+1
o e

Also the equation of the tangent plane is
A(x-x;}+B(y-y)+C(z-2) =0

Vo n= (i+j+k) -

and the equation of the normal line is

(x-x})/A=(y-y,})/B= (z2-2.)/C

where (Jr:l,],f1 z])=(1, 1, 1) andA=%¥, B=%;E, C=%1ZE
at (1, 1, 1)

Thus we have the equation of the tangent plane :
3(x-1)+3(y-1)+3(2-1)=0 or x+y+z = 3.
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The equation of the normal line is

x;l:E;l:Z;l or x_1=y_1=z_1

>> We know that the directional derivative is maximum along the normal vector
which being V¢ .

Let ¢=xzyz so that we have

¢-£:+ay;+@k -»21yz‘31+x2z3;+3x yz* k
[V ]( 21, -1) =~ 4i—4j+12 k which is the required direction in which the
directional derivative is maximum. The magnitude of this is given by

VA2 (1+41+9) = 4V11

>> Let ¢ = xsinz—ycosz be the temperature field.

ﬂ i+ ﬂ k
ay
ie., V¢=smz1—cosz;+(xcosz+ysinz)k
[ Vo ]( 0,0,0)= "7 18 the required direction which means to say that the person

should move down along the y-axis to get warm guickly.

I8 5.*.'!;_-:;,r.--_'f:rm.-u';.f.-'.r_a'.'.:f." et s :_,"I. 4oy oy .:'; ot — L1 D haga naumon
oL he of Vb o B dds [ Al - rnd gl
>> Maximum directional derwatwe is along V¢ and in the dnrechon parallel to
y-axis the magnitude is given to be 32 units.

Vo -j=32at(-1,1, 2) (D)

Weh_aveVd::%%r’%-%Ej%uggk

ie, Vo= (ay’+3cx? )i+ (2axy+bz)j+(by+ 2 z)k
(Vo)1 1 2y = (8+12)i+(=2a+2b)j+(b-dc)k

Now V¢ -j=~2a+2b =32 byusing(l), or —a+b = 16
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Alsosince V¢ is parallel to the y—axis we must have
a+12c =0 and b~4c = 0

Thus by solving the three equations :
~a+b =16, a+12c = 0, b—4c = 0 we obtain
g=-12, b=4, c=1

>> The angle between the surfaces is defined to be equal to the angle between their

normals and we know that V¢ is a vector normal to the surface. We have the equation
of the two surfaces given by

12+y2;l-zz =9 and x2+y2-z =3
Let =x2+1{2+22 and ¢2=x2+y2—2

We have V¢ = —E;+ ;+-$k
ox dy oz
Vo, = 2xi+2yj+2zk and Vo, = xi+2yj-k
(Vo 15 1 2y = 4i=2j+% = 2(2i-j+2k)
[V¢2](2'_1’2)=4i—2j—k
If 8 is the angle between these two normals we have

Ve, - Vo,
| Vo, | | Ve, |

2(8+2-2) 8
N2 (a+1+4) Vig¥d+1 32

Thus = cos ! (8/3V21)

cos 8 =

ie., cos B

>> Let ¢ = xy- z° and we know that V¢ is a vector normal to the surface.

Vo = i:+%;i;+ﬁk:y;‘+x;‘—2zk

—3
[v¢}(4, L2y = i+4j—4k--- A {(say)
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(V013 5 -5y = 3i+3j+6k = 3(i+j+2k)--B (say)

If 6 is the angle between the vectors A and B we have

cos O A_}Ev

= =3
lA7| | B

Now, cosB = 3(1+4:8‘)
Y1+16+16 \13‘(1+1+4)

-3 -3
VB V6 V3 VIl V3 V2

Thus c039=-% or 0 =11 cos} [T;Z—)

>> First we have to ensure that the given point lies on both the surfaces.

Substituting (1, ~1, 2) onto the equation axz—byz = (@ +2)x we obtain
a+2b=a+2 =» 2b=2 or b=1

Alsoif {1, —1, 2) issubstituted onto the L.HS of the equation 42 y+z3 = 4 we
get 4 which is equal to the RH.S

= the given paint lies on both the surfaces when b = 1.
In order to find 2 we have to use the orthogonality condition Vo, - Vo, = 0 where
9 = axze-byz—(aé-Z)x and ¢, = 4x2y+23
Now V¢, = |2ax~(a+2)}i+(—bz)j+(*by)k
Vo, = 8xyi+4azj+322k
(96,11, 21,2y = {(a—2)i-2bj+ bk
[V 11, -1, 2y = ~Bi+4+12
V$, - Vo, = 0 gives -8(a-2)-8b+12b = 0

ie., —Ba+4b+16 = 0.But b = 1 and hence we get 4 = 5/2
Thus a=5/2 andb = 1 are the required values.
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_8 . 9 d, o, .3
>> V¢—ax:+ay}+azk,¢ 2ZzZ-x"y

Vo =-3Cyi-x>j+2%
[Voly _ 1, =3i-i+2k

Now [?](1’_1’1)=2x’+3j+k |
(A V0l y 11y = (3)(2)+(-1)(3)+(2)(1) = 5
. i ok
Also AxVé=[2 3 1
3 -1 2

e, AxVo=i(6+1)-j(4-3)+k(-2~9)=7i~j-11k

>> [Note : If a straight line make angles o, B, v with the coordinate axes then cos q,
cos 3, cosy are the direction cosines of the line and it satisfy the identity

cos® ot + cos” B + cos” y = 1. The direction being cos ai +cos B+ cosy k.]
(a) Consider ¢ = 2 ¥ 2

_% ., % . %
V¢_ax:+ay;+azk

ie., V¢=(21y23)i+(x223)j+{3x2y22)k
[V¢](1’ L1y = 2i+j+3k

Since the directional line is making equal angles with the co ordinate axes we have
o =0 =y and hence cosa = cosf§ = cosy = a (say)
. . ot A . . A D

" the direction 4 = ai+aj+ak and the associated unit vector n = d7/ {d’|

a{i+j+k)  1+j+k
N2 (1+1+1) V3

Hence the required directional derivative is

V¢‘3={2i+j+3k}‘ﬁj:%k=%:z\f3‘

i fa
1e., H =
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(b} Unit vector along the x ~axis is i and hence the required directional derivative
is Vo - # Thus we get,

(2i+j+3k) - i=2

>> Thenormal derivativeat(2, 1, 1) = | V| at (2,1, 1)

-—Q:+—-Q +—9k
Vé ay}
e., Vo = logzi-2yj+(x/2)k and IV¢](2, 1,1)=_2j+2k

Thus | Ve | =2V2

. )

> @ ng):zai(fg)”z(f'é&*gﬁﬂ
_ry 98 af .
—fzaxl+gzax;

Thus  V(fg) = f(Vg)+g(Vf)

o oft)era(f)-s iR,

g ox
RN U
‘gz{gzax’“fzax’}

g

x3+y3+z3—3xyz
¢ .
P=gad ¢ = V¢ = %"i 53”-3%:(

>> Let ¢
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Now

Thus

Also
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= (3% -3yz) i+ (37 -3xz) j+ (325 -3y ) k

divf’zv-?

(2,9 5,9 ) (a2 - _ , 2 _
_(Bx[+ay}+az k] l(3x2 3yz}z+(3y2 3xz)j + (32°-3xy )k

-8 (a2 9 32 9 (32
—ax(3x2 3yz)+ay(3y2 3xz) + = (32 - 3xy)

div F'= bx+6y+6z = 6{(x+y+2z)

i J k
- - o d g
curl F=V x F= o 3y 3%

(32 -3yz) (3y°-3xz) (322 -3xy)

=i {% (322 - 3xy) - 55?; (3_1{2-31'2)}

.| a d d d
-7 {5; (322—3xy) ~ % (3x2-3yz)}+ k {E); (3y2—3xz) - 51} (312-3yz)}

ie.,

=i -3x=(=30)) - j {~3y-(~3y)} + k {-3z-(-32)]

curl ?z 0_>

Thus div ?:6(x+y+z) ; curld P_')=-0"’

>> Let ¢ = xyr3z2

= d¢ 9 . do 3 2. .
= Vo = - =
F P axt+ay;+azk y21+3xy222)+2xy3zk
div P=V - F

{8x'+8y]+azk} (yz 1+3xy2‘,;+2xy zk)
:i(f22)+‘§-(3ryzzz)+’i(2.fyaz)
dx dy dz

0+ 6xyz® + 2xy° = 2y (32 + %)
at (1~1,1) = -2(3+1)=-8

il
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i J k

i P2 9 9

Also, curl F=V xF= I 3y P
y3:2 3Jr_|/2:=2 ltyaz

=i (6xyzz-6:(yzz) - (2y3z—2y’32) + k (3_1/2:2-33(222)

Thus curl ?= 6"

>> div?=v‘?=[-a—i+—avj+ik]
A(3Py-z) i+ (xP+yt) j-20 2k}

= % (31'2_1,'—:) + % (xz3+y4) + % (—?_razz)

V.FP=6xy+dy’ -45z = ¢ (say)
Now grad (div ﬂ = grad ¢ = Vo

‘In."ehavqu;-gt-l~ﬁ ﬁk

!t
e, V&= (6y-12%z) i+ (6x+127) j+(-43) k
us . (V8), _y oy = - 6i+24j- 32k

> V.A = (3- i+ 5;;‘ + 2 k] (xPi-2Pyzj+ 22tk )

_9 3, 98 2 9 4
= 5% (xz7) E_)y(Z:r yz].+az(2yz)

= 23—29:27.-!-83,(23
V.A ordiv Aat (1, -1, 1)=1-2-8=-9

- 213
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Next

Now

Thus

o>

ie.,

.,

Thus

VECTOR CALCULUS

i ] k
— —> a d dJd
VxAorcu A= Fy By %

X -2 yz 2y:4

P(22 4227 y) - j(0=-3x2) + k (-4xyz—0)

il

2{1’2y+z4) i+3x22j--4xyzk

x A at (1, -1, 1) = 3j+4k

<

-{Vx?) or div (curlz_‘-‘?}

<

= i _a_ _a_ ': 2 -y N I.l
_[E)x i+ % Ity kJ 2(x“y+ 7)) i+ 3xz j-dxyz k-

T AU ST SUNNNE DUV SO (N
=5 - 2(x"y+z );+ay(3xz }+E}z{ 4xyz)

= dyy —dxy = {

V A=-9and V- (VXA)=0

i ] k

7 .1 4 9 9

curl F'= Vxl'= I oy i
(x+y+1) 1 —a-y

i
=f(=-1-0Q) -j{-1-0)+k{0-1)

curl F= -i+j-k

F.curl = f(x+y+1)i+j—(x+u) k.- (—i+j~k)

= (x+y+1) (1) 4+ (1Y {1)+ {x*y) (1)
= —x—y=l+l+x+y =0

Focud F=0 > Flis perpendicular to curl F
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if ok

P curl?=VxZ)= aii

dx dy dz
xy vz 2y

= i(Z-y*) =j(0-0) +k(0-x)
curl A = (zz-yz) i-xk
Now curl (curl ?) =V x (V x :‘?)

i j k
_ _‘% a%r _éa; =1 (0-0)—4(-1-22) +k(0+2y)
(*-y") 0 ~x

curl ( curl }i')) ={(1+2z2) j+2yk

>> Observing the symmetric nature in V. we can write

v Ve (s 9 i) (g X
dw?—V-V—(Zaxz) [EWJ

. oy _a__ x
V?ﬂ?-{-zz (x)— ,-2--——(2*()

Nx° + %+ 22

x2+y2+z
(x2+y2+z2)— s V422
(% +2+2%)*2 (P+if+22Y72

(y2+z2) +(Z2+22) +(xz+y2) 2(x* 412 +2%)
(P +P+ 222 (x2+y2+z Y2

= X

275
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_ VECTOR CALCULUS
. 2
div V=

NE 2
i j k
d d d
curl V= v x V= ™ Eyr %
X Vy z
N2ty 1m NPrp+ NP4y R

(Note : We should not remove the common factor appearing in the third row of the determinant
as differential operators are involved in the second row)

i V=3l s |- Eerrdl

=Zi {z [:21) (PP +2)y V2 (29)
-y (}1] (e sy (2=>}

Coszi{-ya(P P2y vy (Repey 32 =0
Thus culd V=0

ERAR S A S BT

denshint tecior,
>> Let © = 0, i+0,j+m,k bethe constant vector.

. =

"Wehave r=xityj+zk

?: gx r_>= (1)1
X

j ok
Wy Wzf =% i(w,z-wy¥)
¥ Z

i j k
d 0 0
cuer)—VxV)— 3 3 5

(0,z-w,y) (max-w]z) (0, y-w,x)

Ei(0=(-0p)) = 2200 = 2(0 ity +ayk) = 20
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: - -
curl|7)=2m or w=%curlv

Remark : We had referred to this example while giving the physical meaning of "curl”. The
theoretical version of this problem is as follows :

When a rigid body is in motion the angular velocity is equal to half the curl of its Imear
velocity at any point.

2. Let K=o ivayjrak ; 7=xisyjezk
(Note : This step is common for all the five examples )

Z’-:r_’-.Erl1

3
ox
Thus V (A - _’) A or gad(A-1)=4

V(A z i](zalx)=2ali=:?

i j k
28, Ax7={0 8 8| =% i(ayz~a,y)
X y z
- I ,
_V-(Axr)-—-(zal}-zr(azz—asy)

d
=X b (a,2-a,y) =0+0+0 =10

Thus V-(H’x?’):ﬁ or div(A_’xﬂ=0

29. Thisexampleis same as Exampie-26 as we have A inplace of ® being a constant
vector. We have proved in Example-26 that curl ( o x 7) 20
Thus curl (A x7) =22 or Vx(Axr) =24
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30. A 7= Gy x+a,y+4a,z
Also (Tr_) r_’—(a X+a,y+a,z) (xi+yj+zk)
fe., (Z)- r_)) 7) Z(ax +a, Xy +a xz) i

Now cur]i(A-r)r_)]=VX{(f_1)-?);+}

f J k
- 9 A A
h ox dy oz

2

(a1x2+a2xy+a3xz) (a2y2+a3yz+a1xy) (ayz°+ayzx+a,yz)

in(azz—aay) S
Now consider RHS = 4 x 7~ |
i j ok
ie., =18 & 83| =Z%(a,z-a5y) D)
X Yy z

Comparing (1) and (2) we have,

curl[(;?-?)?]a?x?or Vx{(A-THr=Axr
i j k
31, ™A= X y z|=Xi(ayy-a,2)
&) 4 a3
i j x
Z)x(r_)xﬁ): ) a, ay

(aay—-a?_z) (a z—d, x) (a x-aly)
=X { (a Y-a,a,y-a a3z+n3x)

Now V.|Ax(rx2A

X )]

=X i Tildx-a,a +a°

= ax [2 19—, a2 a3x)
X azx

d
3% ~aya,y- ala3z+a3x)
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2 2 2 2 2 2 2 2
L(ay+az) = {a;+ay)+ (ag+ay)+ (ay+a3)

I

2(a§+n2+n§) =2 | A (2

2
= NI BN 42 2.2, 2
| A | = Naj+a5+a; = | A |7 =aj+a;+ay

Thus div|71+x (r_)xr)1=?- Yl

Remark : In all these five examples we nust oliscrve the symmetry and use "sigma”
notation to arrive at the desired vesult quickly.

Note: These are also a set of problems based on tie aspect of symmetry and the problems are
worked i the general forme mvolving “st”. Particular cases for n can also be asked. The

_ , .= ‘ »
notation and meaning concerning v and r are standard which need not be explicitly
mentioned while asking these problems or particular cases of these.

32. r = !r_)| = \ix2+3F+22

= ? =2t _1/2 +2* and differentiating partially w.r.t x we get
dr r x &r _y O _z
m—— _— = A - = ; _—=
2r o 2x or 5 Ty Iso ay " r Y

Note: The expression for these three partial derivatives will be of use in all the problems and
the same will not be worked in every problem.

Now V(r") = {E 9 .'} (")
ox

_1 Or . . _ Xy,

N R A R L [
ax r
-2 . - . _2 - .

=T 2xi =" xi=n""%;

Thus V(') =grad (#) =nr""2 7
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N

V. =[E%i]—}3(r"x}x
_s 9 - -19r
—Eax(r"x)-z[r"ﬂtf' axx)
ie., = (r"+nr""1£x]=2(r"+nr""2:rz)
r

On expanding the summation we get,
(P 22 + (P4n " 22) + (K anrt T2
=3 +n/ " (2 +P+P)
=3 +n" " P =3 Men" = (n+3) "
Thus V(" 7 ) =div(F 7)) =(n+3)r

M AT =S xi=E (M)

L
St .

Vx (M1 )= >

9
a

v Rl

9
%
"

-~

X z

y

=Zi an" (z) -% (r"y)}

nr’"lﬂz—nr"”lar }

Li 3y a—y

=% nr"“liz-ﬂr"'l-z-y}
r r

I ey s, g,

=Li(n" tyz-nr""tyz) = 0

Ths Vx(Fr)=cud (" 7)=0
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d
d

N N . I
35. V(™) xz( )_zax x(r)
-2 1970 _ 5 2 -1(x
2o a] B 7))
i = i 2,1 = M2 33?’
“ =25 (nr” "2{ +(n=2)7"" 2Ly
ie. ="E[r" +(n-2)"732 J=n2(r"_2+(n-—2)r’"_412)

On expanding the summation we get,
= {(" 2=y 02 ) 4 (M2 (n-2) )
+ (7 2en-2) 4 2)
n {37 24 (n-2)" "4 (PP + )
=n {3724 (n-2)" "4
=n {3/ 24 (n-2)""2} = n""2(34n-2)

=n""2(n+1)
Thus V2() =n(n+1)s" "2

Note : A few important particular cases of these are given and is left as an exercise for the
reader to work out these independently.
J-°

Prove with usual meanings the following :

1 =v[-1-]=~;) 2. v-(?]:_o 3. Vz(

=t |-

>>  f(r)]=% 1zlf( )]-2——If( )]

. 3 [yl 52
ie., =E§{f(f)ax}— a{f(r)}
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~ | -t

or ar
r2->.2+y2+z2: Zra-Zx or a-

w'&:

r_ng—x |
VEf(r)1=2)f(r) > + f7(r)

X
X
()
ie., =Ef'(r)[ 2 }\‘Ef”(f)

) a2y, Ef"(r)é
f(r

X
r

- =

"
™
e

S,

S
'™

ot ey} 02

Yo

=ﬂraﬂ(3r2—r2)+f”(r) = %f*(r)+f"'(r)

Thus VLA ] = 2f (£} +£7 (1)

Nowlet f(ry=¢" . f'(r)=¢ =f"(r)
Thus (1) becomes

V() = %er+e' = ¢ [%—+1)
Thus Vz(e')ée’[%+1]
Also V() = V? Vz(e')=V2{e' (%+1)}

Now taking f(r) = ¢ [%ﬂ}

fiiry=¢ {:;22] + & [%HJ

fr () =e’[;43J + e (:;5%}+e’[‘72}+ e’[r

d

VECTOR CALCULUS

[(P=2) 4 (=) + (A=)} +Lr(2’) T 2

(1)

Q)

.. (3)



VECTOR DIFFERENTIATION 283

r

@

- ” 4 r 4 r 2 r
ie., (r}y=—3€e ——=¢e¢ +—¢ +¢
f P ? ¥

Substituting (3) and (4) in (1) we get

ofe(e)

2" 27
=%{—m+-*+e'l+ie'—ie’+%e’+e'

PR
Simplifying RH.S we obtain

v {2} =¢ [%+1]

Thus V(&) =¢ (%n]

—

>> We need to first obtain V - [-:;— ] similar to Example - 33.

On doing so we can obtain

V- {éﬂ] = -1’-2- (particular case where n = -2)
Then V? (é} is to be worked out similar to Example-35
1

On doing so we can obtain, (particular case where n = -2) v =

me e (3}

2
A

~—
o
S

]

2
A

>> Weshall denote r = I?l sothat A =

"*I'-t'L

divA=V . [-ﬂ is similar to Example - 33.

On doing so we can obtain
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Y2
V. [; } = (particular case where n = 1)

d (div A) = (712\—2Vl
grad (div A) = gra r)_ >

v [-}] is a particular case of Example -32for n = -1

1y _ -7
We can obtain V[?J = -—r-é-
= <= 27
Thus grad(divA)=V(V-A)=—F
= =
-0 ;'\= r =:
17T
A (1 2
G V-r=v. L-; = £ (Refer Example-38)

Fay
{it) Vxr=Vx [I’?) is a particular case of Example - 34 for n = -1

N
'Wecanobtaian[g)]=D or er=0_)

A A —)
Thus V:.r=2/rand Vxr=20

Remark : [nfact we have worked this example without using the notation Pand | 7.
The same results have been obtained in Example - 25 where Vis nothing but 7

>> Consider ¢ = 2x3y2z4

grad¢=V¢=%f+%j+%k
e, Vb= (62722 i+(46lydt) j+ (8PP Kk

div (grad ¢) = V - V&
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e, = (—3- i+ @ j+ 2 kJ (622t i+ 4yt j+ 80° 225k )

=§;(6x2y2z4) + o (4x3yz4) + :% (81'3y2z3)

ay
V-(V0)=2xf a2l f R ORTS
Next vzq;_azxg’ i; k. )

Consider ¢ = ?.rsyzz
%"; = 6x° y? 24, @ = 4x° y2t, % =8y 2

ﬂ 4324? 432 -2
4y 2w 22ty

Adding these results we have according to (2)
V2o = 12v7 2 + 4% 2 + 245 P 22 ... (3)
Thus by comparing (1})and (3) V - V§ = v? ¢ is verified.

We have already referred to these while giving the physical meaning of divergence
and curl.

A vector field F is said to be solenoidal if div E'= 0 and irrotational if
Pt g

curl F'= 0.

Irrotational field is also called as conservative field or potential field.

When Fis irrotational there always exists a scalar point function ¢ such that

Vo = F Then ¢ iscalled a scalar potential of F
>> divf-'-) v.F
_{9;,9.,2 P A
—( I+ay azk] { 1+x2+y2}J
O (X Y}, (_¥
Ox | 2+? | O | Py
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Thus

Thus

b

Now
ie.,

or

[{xz+f)—
(P+y2 )

(¥+f)

A

|zt

— L {p-PedoP] =0

div F =0 = I-' is solenoidal.

curiF_’=VxF

= 0i+0j+k {ax [x2+

tffg)

—

curll?’=0 = I—'

™

afl
divF=0=> —+
dax

(*

\
] 3

)

is irrotational.

= xﬂ+bybzbi+xb1f+bzbj+xbybz“+bk
=f, i+fy7+f3k (say) where

f] = xa+bybzb’ fz - xbf"'bzb, f3

=P Ah

*, 9

oy Tk

VECTOR CALCULUS

Q)

(a+b) x‘”b'lybzb +(a+b) PP 1 (anb) LA =0

(a+b) (xyz)’ (£~

1+f——1

_1}=0

This equation is identically satisfied only when a+b = 0

Thus F is solenoidal if a+b = 0

Next consider curl F_’= 5"



VECTOR DIFFERENTIATION 287

i j ok
ie Vv xF= 2 9 2 =0
’ dx dy oz
h £
. h_ % _o .
ie., E{EHE i = 0" and by using (1) we have

5 (bxbyb-lza+b_bxbya+bzb—1) iz
i, bt (YAttt}
Since x” # 0, the equation is identically satisfied when b = 0 or a+b = b—1
Thus b =0 or a = —1 is the required condition for F to be irrotational.
If F isboth solenoidal and irrotational we must have
a+b=0andb=0or a+b=0 and a=-1
it., a=0 and b=0 or a=—-1 and b=1
Remark : If a=0 and b=0 wehave F = i+ +k
fa=-1, b=1 wehawe F = yzi+zxj+xyk
It can be easily seen that divE'= 0 and curl F= O in both the forms of E

>> Wa have to show that curl F'= 0

i j k
P = d d g

oy oz
(y+z) (z+x) (x+y)

=i(1-1) =j(1-1) +k(1=-1) =0

Hence f’ is irrotational.

Now let us consider V¢ = I-_')

Iie., %i+%j+%k=(y+z):'+(z+x)j+(x+y)k



= %:y-&z ¢=f(y+2)dx+f1(yfz)
ie., o = xy+xz+f,(y, z)
%:z+x ¢=I(z+x)dy+f2(x,2)

ie., ¢ =yztxy+fy(x z)

%f”w ¢=I(I+y)dz+f3(x'y)

ie., O =xz+yz+fy(xy)

VECTOR CALCULUS

Q)

@

.3

[Nowwe need to suitably choose the arbitrary functions f, (y,z), f2 (x, z), fy(x, y) such
that we obtain an unique expression for §. Tochoose f, (y, z) we look into the equations (2)

and (3) and select terms which do not contain x. It can be terms with y or z or y and z.
Similarly we have to choose f,(x, z) from(1}and (3), f3(x, y) from(1) and (2)}

Letus choose f, (v, z) = ¥, f(z, ¥) = xz, fy(x, y) = xy from (1), 2) & ).

Thus the required ¢ = xy+yz+2zx

>> We have to show that curl 1_-'—)-—* (-)—)
i

P d

VxF= =
X dx

=, .
I is conservative.

Now we have to find ¢ such V¢ = 3

J
d

%

k
9
%

(2P +yz) (2 y+xz+202%) (2P z+xy)

i(dyz+x-x—4dyz) -j(y-y) +k(dxy+2-dxy~-z) =0

e, 0,0, %": k= (2P +yz) i+(h2y+ﬁ+2w2)j+(2fz+xy) k

dx dy
> Rty

ie., ¢=r2y2+xyz+f.l(y,z)

o= [(2xf+yz) dx+f (v, 2)

1)
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a¢ 2 o
== = 2x“y+xz+ 2yz
Y 4 Y

¢ = I(Zrzy+xz+2_yzz) dy+fy(x, z}
6= Xy Fxyz Yy z£+__.fé(1', 7}

%S = 2y22+xy

o = y222+xyz+f,’(x, ¥)

te.,

O = I (2y2 Ty} odE-

289.

2,
~f (X, Y )

(3

Letus choose f,(y, z) = V' 2, fo(x, 2) = 0, f,(x y) =2y from (1), (2) & (3).

Thus & = x° yz + yz F+ xyz  is the required scalar potenual.

>> We have to find ‘2" suchthat curl ?: o

<l

i j k
, 2 9 9 9
ie., VxF= e » 3
(axy-z3) \a—Z)xZ (1-—a)xzz
e, i{0-0)~j{(1-a) 2+3%] +k[(a-2) Zx~ax} =0
e, *(a-4)Ej+(a-4)xk=0

The above equation is identically satisfied when a = 4

Now consider V¢ = (F A

ie., %% i+ %ﬁ i+ ?g k= (dxy-2°) i+2% - 3xz%k

o

= %%:4;@'—7,3 ¢=J(4xy—-z3)dx+f1(y,
e,  b6=2Cy-x2+f (v z)
f’:%=2r2 b= szzdy+f2(x, z)

z)

Q)
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£,  ¢= 212y+f2(x,z) )
g =32 o 0= [-aPdiefy(x y)

je, 6= -x+f(x,y) | )

Let us choose f, (y, z) = 0, fé(x, z) = —x2, Lx y) = ?_xzyfrom(l),(2)&(3).

Thus ¢ = 2 y-x2° |

46, Find constants . ;,-:r:-_._;" P A I S A I e -7 S N I \
s orrotational Also i e e o b e T Ve

> Wehavetofmd a4 and b such that curl F = 0

i j k
g 9 9 9 -
VxE= dx dy 0z =0
(axy+z3) (3x2—z) (b:rzz—y)
ie,  i(-1+1)-j(b2=32%" +k(6x~ax) =0
ie, —Z2(b-3)j+x(6-a)k=0
The above equation is identically satisfied when
b-3=0and 6-a =20 Soa=6 andb =3

" Now consider V¢ = F when a = 6, b=3

e, . @:+£;+—‘?k—(6xy+- T3P -z) j+(3x2-y) k

= g—izﬁxy+zs s b= j-(éxy+zs)dx+fl(y,z)

ie., ¢t=3x2y+x23+f1(y,z) (D
9% _ . -
o (3¢-z) .~ 6= [(3R-2)dy+f(x 2)

e,  b=3Cy-yz+f(x z) . 2)

%% =(3?-y) o 0= JxPoy) derfy(x y)
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e,  ¢=x-yz+fy(x y) o (3)

Letuschoose f,(y, z) = ~yz, fzfx, z) = xz3, Ja(x, y)=3xzyfrom{l),(2)&(3).
Thus the required ¢ = 3WPy+xt-yz

47 N e xaybex)r i - g dacLus T find g o, € osuch that
Lond thew Tad @ oo ;¢

# j k
P 9 9 a -5
>> VxIF- 3% ¥ > =

(x+y+az) (bx+2y—z) (x+cy+2z)

e,  i(c+1)=~j(l-a) +k(b-1)=10
= c+1=0,1-a=0,t-1=0

a=1 b=1 ¢ =-1 are the required values.

c
Now consider V¢ = }T)when a=1,b=1¢=-1

L, % 9
ie., ax1+ay}+azk
=(x+y+z)i+( +2y-z) j+(x-y+2z) k

= %S:x+y+z s :I(x+y+z)dx+f1(y,z)
ic., ¢=§+.xy+xz+f1(y,z)‘ : ..
, %3: x+2y—z "o b= [(x+2y-z) dy+f,(x 2)
e, 0= xy+y—yz+fy(x z) )
%3=x—y+2z wob= famyr2y dzafy(x y)

ie., ¢=xz—yz+z2+f3(x,y) .. (3
Let us choose f, (y, z) = yz—y2+22,
x?. ) x2 .
fixz) =5 +xz+2’, filx y) =5+ xy +y* from (1), (2) and (3).
2

Thus the required ¢ = % + xy+xz+f—yz+ 2
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4z

o

' VECTOR CALCULUS

i ]
o _| 2 F) )
VxE =15 dy oz

Zry::2 (x222+zcosyz)‘ (2xzyz+yc05yz}_

= | {21’22+('—yzsinyz’+cosyz)—2xzz-( ;yzsinyz+cosyz)}

. —j (dxyz —dxyz ) +k(?_xzz-2rzz) =0

curl F=0= —F-’ is a potential field,

Consider V¢ = P

ie.,

ie.,

%Ei}%j+-g%k=lryzzi+(x222+zcosyz)j+(2x2yz+ycosyz)k
%3=2ryzz ¢:=I2xyzzdx+f1{y,z)

o=y fi(y. ) ()
g%:xzzz+zcosyz b= I(xzz2+zcosyz)dy+f2{x,z)
¢:x2yzz+5inyz+f7,(x,z) L (2)
9

3z 22 Yz + U Ccosyz

¢ = j(2x2y2+ycosyz) dz+f (%, 1)

¢):x2yzz+smyz+f3{x,y) )

Let us choose f, (y, z) = sinyz, f,(x, 2) =0, f_}(-x, y) = 0 from (1), (2) and (3).

Thus the required ¢ = x° y 2+ sin Yz



VECTOR DIFFERENTIATION 293

»>> We have ?: y3 r_)and we rieed to show that div f-ﬁ= 0, and ﬁurl I_-'—’= 0_> ;

We have to proceed on the same lines as in Examples 33 and 34 to obtain the resuit.
It is left as an Exercise to the reader to establish the results.

>> We need to first establish the result for div (7" ;_)) and curl (7 r_'%)‘ These
have been worked in Examples 33 and 34.

We have obtained
V("7 )=(n+3) " D
Vx(Mry=0 @
{a) v - (" ?) = 0 when n = -3 with reference to (1)
7' 7 is solenoidal forn = -3

(b) v x (" _r_)) = 0 with reference to (2)

#' 7 is irrotational for all values of »

(c} Combining these two cases we can easily conclude that,

" r_> is both solenocidal and irrotational forn = -~ 3

These are some properties relating to various meaningful combinations of gradient,
divergence, curl and laplacian. These are established by taking a general scalar point
function or a vector point function.

These have to be remembered for working certain types of problems.

Vi

aier o ol Tprad oy e N N T

) Jd . ¢
Proof: Letd be a scalar point function of x, y, z. grad ¢ =V¢ = 94 [+ L4 j+ 99 k

ox oy 0z
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curl (grad¢) = V x (V) =

¥l ¥l -
gl —
FE e =

o -x[3(2)-2(8)) 25258
" i) % lay): o azdy
Thus curl (grad ) = 0, for any scata: function ¢

Vi ol fo o sy s 0 e 8T e A Y Ly

Proof: Let A = a, i+a,j+a,k beavector point functionof x, y, z

j ok
da, Jda
- - d a8 d! _ 3 2
n:urlA--V'x:ﬂ.—_.axayaz =Zi [ay az)
%

Now div (curlA)— (V x /_1))

(y2 ). ?"__E'; P P

- ox 9z dxdy Oxdz
On expanding we get, :

2

32a3 _ 32a2 azal 82a3 d°a, _ Bzal -0

dx dy M& @& @M dz dx &@_
Thus div (curl A) 0, for any vector function a

Pooun -1 4‘1 TR Jis - P A < IV _""{3'} TR

Proof: Let A = a11+a2;+a k beavector pomt function of X, ¥, Z

J
& FRER] (a3 %,
curl A=V x A = % % '2’(@_&]
a

a

0

a, 4, 45
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Nowcurl(curl?&’):?x(\?xz?)

i j k
= 4 9 2
dx dy dz

{ ?a, &’ a, [ Pa, Fa, _
=3 i ay8x+azax - X ay2 +-527,byrea_rrangmg‘

295

(In order to get V* in the second term and observing that we do not have the second order

partial derivative w.r.f x we must think of adding and subtracting the same)

#a
Adding and subtracting X i 3 21 we get
X

zi[azal #a, a2a3J_Ef[azal Pa, azalJ

o2 | dyax T dzox *

ax? oy 322
da da on 2 '

iy LG AR B

_Ezax(ax+ay+a‘z} Z[ax2+ay2+azzJa1:

):5‘3; (div &) i-V? £ a i = grad (div &) -V? &

Thus  curl (curl ?) = grad ( div E')) -z

B e O L VT LU P T PR

Ey i

Proof : Let A" = 4, i+a,j+a,k be avector point function of x, ¥,z and ¢ be a

scalar point function of x, Y,z
bA = ¢l{ﬂ1c‘+£l2]+ﬂ3k) =Z ($a) i

Now div (¢4 ) =V . (¢4 )
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N R :
_I{E 8:(!] }.(q>a}):

) R U

=2 % (9a,) "2'!!.\¢ T Ri!
iz

ic.. div{¢f}=d)£-.~1-+2‘,§$i-};a1a
dx dx

{Note : The second term which is of the form X A, B, isbeng writtenas L A i L B 1)

Thus div (¢ A ) = ¢ (div A) +g A6 -4

Proof : Let ¢ and A = ayi+ayjt ak be respectively scalar and vector point

functions of x, 1. 2z

0 A= (0ay) i+(day) j+(da)k

LA
5 N R
Now curl (¢ 4) =V x (¢ A) =] & dy Iz
.q)al ¢02 Qﬂ3i
| I 2
ie., =% i {-é-y- (9a2y) ~o (¢a2)}
24 da
_pille 3, 2 ,(J %
_z;{{¢ay+aya3] \¢az+aza2}}
da da
- T2, %, _ %
"‘”[ay az] +E(ay"3 az“Z)'
i ) ik
=0 3 8 B |9 3 9¢
TV lox 3y oz dx dy 0z
a; 8y A, 4 4y 4

G(VXA)+Vd X A
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Thus curl (¢ A) = ¢ (curl A) +V6 x A

Remark : V.[- 4 and 5 when presented interms of V. are in a format sinular to the
product rule of differentiation.

. " o -
[ I R A

- 3 - : )

- , . = :
Proof: Let A =a,i+a,j+a,k and B = b i+b,j+b,k betwo vector point
functions of x, y, z

Now div (A X )=V-(/_"?><B_’}

dJ
L (by—a3by)

- L 2 9x 3 ox 3 ox 2 ox
On expanding we get

8b3 aaz abz aa3 ab d ok oa, }
Do T T TR TS b3 3y |

[ b, 3,  a on, ]
+ L - b

4 5
(Note: We have to focus our attentionon the RIS of the desired result and accordingly pla

for rearranging the terms. Since we have dot products with B and A, naturally we shou: |
have the first term lead by b, and second term lead by a, with the summation notation)

da da ab db
2h | — - =2 -%a | -2 .
tldy oz Ylady oz

da oq ab ab
. 3 2. , 3 2 .
(Zblr)- Z[——ay ———az]: —(Ealr)-[—may ———azJa

ie.,

1l
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(-~ TAB =XAi ZBi)
ij ok i j k
= (Z b i) ;%%a% ~(Zai) %%(%
a, a, A, by b, by
=B (VxA)-A&-(VxB)
Thus div (?x E’)n—-ﬁ)- curl A - A - curl B

Note : We work a few problems by using vector identities. Some problems can be done without
using the vector identities but the same becomes very simple by the use of vector identities. In
some of the problems we have to necessarily use the identities to arrive at the desired result.

>> Let ¢ (x, y, z) bethescalar point function and z_ff)(x, ¥, 2z ). bethevector point
function. We have to show that grad ¢ is irrotational and curl A’ is solenoidal. That
is to prove that

curl (grad ¢) = 0 and div (curl E)) = 0
We only need to establish the vector identities V.- 1 and V.I-2.

]

">> ¢ (x, v, z) isaharmonic function implies that it satisfies the Laplace’s equation
vig =0
v v
NN
At e oz
We have to show that div (grad¢) = 0 and curl (grad ¢) = o

. 3 . ) . &
div (gradq:):v-th:[zar]‘LEfr} =.L-5-£

0

s

_Pe o P
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By using (1) we have div (grad¢) = 0 and hence grad ¢ is solenoidal.
Also, establishing curl (grad ¢ ) = 0 is nothing but establishing V.1 - 1

>> We have to prove that curl (9Ve) = o’
€., toprovethat V x (¢ Vp) = 0’
We have the vector identity (V.- 5)
= = -3
Vx(¢A):¢(VxA)+V¢xA ' (can be assumed)
Taking A= V¢ we have
VX (V) = 0V x (V) + Vo x Vo

Vx($Vd) =0% 0= ﬁ:’because the first teng is zero by the vector identity (V.I-1)
and the second term is zero since V' x ¥V is 0 for any vector

Thus V x (¢Vp) = 0_} = ¢ V¢ is irrotational.
Aliter : (Without using the vector identities)

3 3
vl & 2 2

3" 1y de) [, 2

dx dy dz

n

¢ V¢ is irrotational.

>> We have the vector identity (V.I- 4)
($X) = 0(V - D)+ Vo - &
Taking ¢ =« and 4 = Vo we obtain
V (uVo)=ulV (V) +Vu. W
ie., V- (uVe)=uVe+Vu . Vo RN
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Similarly we have,
V-(UVN)=UV2H+VI?'VH . (2)
(1) — (2) will give us
V.(uVo)-V- - (vVu)= wvio - v Vu
Thus V- (#Vo—oV) = uV:o—0Vou _ ... (3)
Further if ¥ and v are harmonic functions then V=0, V=0

(3)becomes V - (u Vv-2Vu)=0

= uV v-v V u issolenoidal.
5. 0f p-; aisi f die LGl e e worn e salenotasd
- - . . ’ '
>> F, and F, areirrotational by data.
= = =
= curl F; = 0" and curl F, =0 LD

We have to prove that div (f; x f;) =0

We have the vector identity (V.I- 6},

—
div (E}x B ) =B curl &~ A - curl B (assumed)
Lo = = -2 = =3
div (F; X F,) = F, - curl Fy — Fy - curl £,
e, aiv(F,xF)=F" 0~ F, - 0= 0, by using (1)
div (Fy X F;) =0 = f: X I_?: is solenoidal.
' . <ot . ot . o .
S6. fF o I N prens al 5o cust Dt e bangley.
= 1 =2 +
>> F=- Vo and we have to prove that F- curl F =0

We shall first find curl F where F is of the form ¢ z
Let us consider the vector identity (V.I- 5}

Vx(0A) = 0(VxA)+ Vo xA
Vx[-l—Vv]:zl[Vx(Vv)}+V(l]va
u u u
The first term in the RHS of this equation is zero by a vector identity
curl (grad ¢) = 0 (VI-1)
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X
<]

} v te, curl ?:V(%JXVD
= = ( 1)
Now F'-ecurl F=] vy -1V ;JXVU

RHS of this equation is a scalar triple product or the box product of three velc_tors.

ie., P_') curl ?= [% Vo, ¥ (%], VU}

ie., ?-cmlF=l[Vv V(lJ Vv]=0

( Note : Since the box product of three vectors is equal to coefficient determinant, we have

1
removed w45 a4 commmon factor from the first row)

F. curl F= 0, since two vectors are identical in the box product.
= , . =
F' is perpendicular to curl F

ST By nsing vecter wdentities e i

1 A ) = (- 20 ! i o - \J = {‘_
>> (a) Wehave VoA =V -Dy+vp. A

V(") =V ) v D

Now v-?’:(z%:‘)-(xn)=1+1+1=3

9 =
Also V" = "2 5

(Refer Example - 32)
v = 2(-)-r)~-1r1r”2|4r|2 a2 = gt

Using these in the RH.S of (1) we get,
V("7 ) =37 "

Thus V. (7)) = (n+3) ¢

(b) Wehaver(¢ )_¢(VxA)+V¢xA

V(P = (VX T)+V A x ‘ @)
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i j ok
- d o0 o -
Now, er-lax dy 8z =0
\x y oz
Also Vr"xr_)=(m}'“2 ?)xr_)= a2 (;_)x ?):6‘)
Thus from (2), V x (¢ 7)) = 0
t n-2o%
> V(i )=nr r (Refer Example - 32}
Ao V(M) =V . (V") =V (n’"E)
Consider V - (& A) = 0(V - A) + Vo - A (VI-4)
V-(nr”‘23=n{r"“zv-7+v'(r"*2)-F"}
e,  =n{3len-2) AATT} LV TR

1 {3r"‘2+(n—2) r“’“rz} s s A

{3 2 (n-2) 72 = n 2 {30 (n-2))

Thus V2 () =n(n+1) ¥ ?

s> A issolencidal = div A = 0 (D)
We have the vector identity (V.I - 3)

curl (curl f) = grad (div ?) -2 A

curl ( curl f) = —v? Z) by using (1)
Now curl curl {curl { curl 1—4?)] = -9 curl curl A

ie., curl curl[aul(curl'?)}-*——vz"—vzf_‘)}’

Thus curl curl curl curl X’= w2 VZH’
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-3 , . .
>> g2 {r" r”) involves Laplacian of a vector point function and hence we recall the
identity

curl (curl A’) = grad (div &) - V27’ . (VI-3)
V7= grad { div Z)) ~ curl (curl 1?)

Now v2(/" ;_)) = grad{div (" 7’)1 - curl [rcurl (" ?)}

:

But  div (/" r_)) = (#n+3) 1" Refer Example - 33
and  curl (/" ;-)) =0... Refer Example - 34

V(" 77y = grad{ (n +3) 7} = (n+3) grad (1)
2

But ad (') = nr""2 77 Refer Example - 32
gr

Thus Vz(r” r_>) =(n+3) n 20 n(n+3) 2

Find the unit vector normal to the following surfaces at the indicated points (1 to 3)
1. x3+y3+3xyz=3 at (1,2, -1).
2 xzy+ylz+zzx =5 at (1, -1, 2)
3. xytyztzx =1 at (-1, 2, 3)
Find the directional derivatives of the following : (4 to 9)
4 o =xy+yz+zx at (1,2 3} along 3i+4j+ 5k.
5. ¢=xy2+yz3 at {2, - 1, 1) along 1+2f + 2k,
6. 0 = eZTTYTE 4 (1 1, -1) in the direction towards the point (3, 5, -2).
7.0 = .ty2 +y23 at (2,-1, 1) along the (a) x—axis {b) direction which makes

equal angles with the coordinate axes (c) normal to the surface XYy+yz+zx =3
at the po_int (1, 1, 1)

8 ¢= x2y+y2z+zzx at (1, 1, 1) along the tangent to the curve
PN :
r=tiv e Pk

9. ¢ = ¢ cos yz at the origin in the direction of the tangent to the curve
r=asint, vy =acost, z = af at ¢ = /4.
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10. In which direction the directional derivative of the function x* yz 72 is maximum
at the point (1, -1, 2 y? Find the magnitude of this maximum.

11. If the directional denvative of the function ¢ = axy? + byz + ez x° at
(1, 2, — 1) has a maximum magnitude of 64 units in the direction parallel to the
z—axis show that the values of a, b, ¢ satisfy the equation a+b+c = 22.

12. Find the angle between the surfaces xlogz = y?‘ -1 and x2y+z = 2 at the
point {1, 1, 1} and also find the angle between the normals to the surface

xlogz = y* -1 atthepoints (1, 1, 1) and (2, 1, 1).

13. Show that the surfaces 4 +2° = 4 and 5 - 2yz—~9x = 0O intersect each other
orthogonally at the point (1, -1, 2.

14. Find the value of the constants 2 and b such that the surface £ +ayz = 3x and

bx2y+23 = (b—8) y intersect each other at right angles at the point
(1L 1, -23

15. Find grad (div ?) and div ( curl X}) for the vector A = x21'+3yj+x3 k

16. If ?=x§i+2x2yzj-3yzzk find div A, curl A and div (curl A) at the
point (2, 1, 1)

7. 1f A= (f +2-5") i prove that
div A=-2Xx cul A=2E(y—-z) i

18. f ¢, =x+y+z ¢, = * +y2 + 2%, 0, = xy+yz+zx prove that the scalar triple
product of the vectors Vo, V¢, V¢, is zero.

19. If A= xzyi—szj+2yz k, find curl {curl A) and verify that
curl {curl f] = grad ( div ;‘?) - VZZ).
20. If ¢ = xyz and A = xzyzi+ylzxj+z2xyk verify that
Vo (0A) =0 (V- A)+ Vo A
21, f A =% %, B'= X yzi verify that
V (AxB)=F (VxA)-A - (YxB)=0

Prove the following

SR RN R
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24, Vz(logr)=;1§ 25, VZ(%J=O

2. V(fg)=fVigag Vf+2Vf. vg

27. Find the value of the constant ‘2’ suchthatthe vector function

A= y(ax? +z) i+x(y?-z2%) j+2§¥(z—xy)k is solenoidal.
For this value of ‘¢’ show that curl A is also solenoidal.

28. Show that the following vector field is irrotational.
F'=(siny+z) I+{xcosy—z) ;+(x-y2_)k
Also find the scalar function ¢ suchthat F'= v¢,

29. ]i;ld the values of the constants g, b, ¢ such that
F=(x+2y+az) i+(bx-3y-2z) Jr(4x+ey+22) k is conservative.
Also find its scalar potential.”

30. Prove that Vv, x V¢2 is irrotational.

~i+37+2k 5 2i - 3§ + 5k
L i CEERLE
Si+2i+k ) 6
> V30 5v¢
2
11 —e
5. ‘—3 6. ﬁ
-5 18
7. (a) 1 (b)and {c): Noy 8. Ny
9.1 . 10. 4(4i-45+3f), 4va1
1. a =6 b=24 ¢c=-8§ 12, cos™ ! L cos™ ! =
A6 b=2cs - Va0 )’ IO
4. a=~1,b=2? 15. 24, 0
16. 6, —-11i+4j, 0 19. 2(x+1)j
27. a = -2 28. ¢ = xsiny+xz-yz
2 2 .
29.a=4,b=2 ¢=-1 ;¢ =52— +2xy+4xz—3% —-yz+zz
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Let the coordinates of any point P in space be (x, ¥, z) in the cartesian system.
Suppose x, y, z are expressible interms of new coordinates (uy, 4, uy), we can

say that x, y, 2 ‘are functions of Uy, Uy Uy Let us suppose that we are also in a
position to express #,, U,, ¥, interms of x, ¥, 2 by solving feliminating. Thenthe
coordinates {u,, H,, u,) are known as curvilinear coordinates of the point P, where
it is assumed that the correspondence betweel (x, y,z) and (u, Uy Hz) 15

unique.

The surfaces u; = ¢} and u, = ¢y Uy = 0y, €. Oy, O being constants, are called

coordinate surfaces and the intersection of each pair of these surfaces give rise to curves
called coordinate curves.

A system of curvilinear coordinates 1 said to be orthogonal if at each point the tangents
to the coordinate curves are mut 1lly perpendicular.

- .
Suppose r = xi+yj+zk be the position vector of a point in space, we have

-3 —3
r = r(ul, o u3).

ar ar ar
2 —— —— are called the tangent vectors to the coordinate curves and the umit
d u, J U d U,

tangent vectors in the same direction are respectively
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.20 17 A a7 flar a _ 37 /| 37
1.au1- du |” 2 iy u, |” 2 du iy
- — -
The quantities h, = 2r by = 2r chy = 9r are called scale factors.
du, i, du,

For the orthogonality of the curvilinear coordinate system we must have

A

AA Al
[4

M st
17¢=0 ¢6,6,=0 ¢e.¢ =0
These are analogous to the property of basic unit vectors in the cartesian system

=0, jok=0, k-i=0

i
Fa A Fal Fa A Fal
Wehaveelxezzea,e = g,.

A_A P
2 X8 =&, 8 Xe e,

Thus ?1 , ?é, 33 form a right handed system of vectors. If A is any vector in the
orthogonal curvilinear coordinate system then

— A A A . '
A= A1 & +1¢12 £*2+A3 €, where Al' AZ’ A3 are scalar functions nf Ups Uy, Uy

In additior to the well acquainted rectangular cartesian coordinates (x, vy, 2) we
introduce two new set of coordinates.

(i) Cylindrical polar coordinates (p, ¢, z) given by the transformation:
X =pcosd, ¥ =psine | — .
(ii) Spherical polar coordinatcs (r, 8, §) given by the transformation :

x=rsinBcos ¢, y = rsinBsing, z = rcos o,

We are familiar with the vector differential operator V = 9 i+ 2 j+ 2 k
dx dy’ 9z
82 32 2

and the. Laplacian operator V2 = V.V = + + operated on scalar and
P P 32 32 a2 P

vector point functions.
If v isascalar function and A is a vector function of X, ¥, = we know that :
Vy = grady, V.A = diVZ),V x A = curl:{), Vzw = Laplacian of .

In this topic we obtain expressions for these in a general curvilinear coordinate system
with special reference to the cylindrical system and spherical system as particular
cases,
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The cylindrical polar coordinates (p, ¢,2 ) is regarded as a particular case of the
general orthogonal curvilinear coordinates (u,, u, u,) by setting

(Uy, Uy Ug) = (p, &, z) and are related to the cartesian coordinates (x, y, z) by

the transformation :

x =pcosd, y =psing, z =2z
Thus 7 = xi+yj+zk becomes

= pcos¢i+psindj+k
We have by the definition of scale factors,

a7 o Voot ol =

hy = 30 | |cos¢:+sm¢,r+0kt = Veos“ ¢ +sin“ ¢ = 1
27| '

hy = 30 | - ‘—psin¢i+pcos¢j+0k| = Vp? (sin® ¢ +cos’§) = p
ar’ Nr Tt

hy =52 =10i+0j+1k|= +0°+1° =1

Thus hy =1, h, = p, h, =1 fr the cylindrical system.

We have (uy, t, uz) = (r, 6, $) and by the transformation
x = rsinBcos ¢, y = rsinBsind, z = rcosf we have

- . . . o
r=rsinBcos¢i+rsinBsingj+rcosk

—_
hy = r =1sinﬁcos¢i+sin85in¢j+cosﬁk|
ar
ie., = \lsinZB(c052¢+sin2¢)+cos‘8_= \Jsinze+c05§8 =1
‘ ar
_ler | . Bsindi—rsindk
h, 55 lrcosﬁcosq)wrcos singj—rsin® 1
ie., = '\(;2(:0529(C052¢+sin2¢)+r25in29
= V2 (cos? @ +sin’6) = 7
ar
hy = 36 =1~rsm95in¢i+rsin8cos¢j+0k
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ie., = Vr sinzﬂ(sinf¢+cosz¢u) = rsin B
Thus hl =1, h2 =7, h3 = rsin® for the spherical system.

Note : r = xi+yj+zk will giveus hh=1=h = h, for the cartesian system.

We have for the cylindrical system = pcos¢it+psingj+zk

Let E\p , % , é\z be the basic unit vectors of this system.

They are given by

—3 - —
A dr dr 1 dr C .
0 55/ 5;)- _Eap“{COB¢I+Sln¢}+OkJ’ since h]_l.

_.).
%:El;-g—;=%(—psin¢i+pcos¢j+0k), since h, = 1.
ie., ?¢=—sin¢i+cos¢j+0k
—3

A 1 dr 1, . o .

: =k, 9z 1(01+0}«}-1k) = 0i+0j+1k, since hy = 1.
Now Qp-?¢=—cos¢sin¢+sm¢cos¢=O; %-QZ =0, gz-é\p:O

Thus the cylindrical system is orthogonal.

We have for the spherical system
F")= rsinfcospi+rsinBsingj+rcosOk

M A M
and let e , e, e, be the basic unit vectors of this system.

Further we have hl =1, h?_ =7, h3 = rsin@

A 137
Now, erzz——;zsinBcos¢i+sinBsin¢j+cosBk
1
—3
A 1 dr 1 ) L .
gy = h_z 38 " ;(rcos9cos¢t+rcosﬂsm¢;-rsm8k)

ie., €y = cosBcos di+cosBsingj—sinBk
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? =L _3__[ = —1-(—rsinBsin¢i+rsin9cos¢'+0k)
¢ hy dd rsind ]
le., = —~gsindi+cosj+0k
A
Now €y = s-inBcos@(c032¢+sin2¢)—sin9c059 =0

"€, —éosﬁcos¢5in¢+c0595in¢cos¢ =0

6m>¢m>_‘m> o'm;;
4
]

e = —sinBcosdsing+sinBcosdsing = 0

Thus the spherical system is orthogonal.

Wehave r = r (1), 1y 13}
- ar 7 ar’
dr = duy +—— du, + du, (total derivative)
du, 1 du, 9 uy

) — A A A
ie., df=h1dulel+P12duzez+h3dlt_,’e3

For a curve in space through the point P the arc length ds is given by tl = relation
ds = | dr |

: 2 52 2 42 2,2
e, ds = Vh dud + 5 dul + bl duj

2 _ g2 42 2 4.2 2 42
or ds® = hy duy + by duy + hy duy

The vector dr along the u, curve for which u, and u, are constants is given by
- AT
dr = h du e since du, = 0 = du,.

M as
Similarly along the u, curveand u, curve wehave h,du,e, and hydu, e,
respectively.
The volume of the rectangular parallelopiped formed by these is called the volume
element dV at P in the orthogonal curvilinear coordinate system. Using the

geometrical meaning of the scalar triple product of vectors we have,
M ot A fat Eat fat
dV = hydug e, - (hyduye, X hyduyes)= by bty b duyduydugy Le) - (e, x ey) )
A ) A AA '
But e, X eg=e and ¢ -¢; =1

dV = hy Iy by duy duy du,
Thus ds = B dd + o dll + e did and dV = by b, du; du, du,
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(i) In the cylindrical system :
(”1' Uy Uy ) = (P, §, 2) and h] =1, h2 =p, h3 =1
ds? = dp2+p2d¢2+d22 ; dV o= pdpdoddz

(ii) In the spherical system : (1), #y 43} = (r, 0, ¢) and

hl =1, h2 = 7, h3 = rsin B,

ds? = dr+ a6+ Psintod ol v = Psinbdrdode

Consider a scalar point function y ( Uy, ty Hy)
fal A fal
Let Vw:ale]+a2e2+a3e3 (D)

where ), 4, @y are to be determined.

= - _—
Wealso have r = r{ Uy, Uy, Uy ) and as a total derivative,

— —
= -dr ar or
dr = aul a‘ul + au2 du2 + 8113 du3
b, dr= hyduy & +hy duy &)+ by, 8, Q)

We have the fact that x, Y,z are functions of ), Uy, 1y and vice-versa.

We are also familiar with the result : o W= dr v W

Hence dwy = 4 hl dul +tayh, du, +azh, dua . (3)
But as a total derivative we also have from Vo=, u,, Uy )
_ oy oy dy
dl]!—auldu1+a—a;dlf2+§;;dua o)

Equating the R.H.S of (3) and (4) we have,

Jy a3y dy
alhl:aul' azhzzauz’ a3h3=—;1—3+ .

1 dy 1 dy 1 dy

aq :_"'_"—' a =——._.-__.._! 2, = — ——

1 hlaul 2 hz u, 3 h3 u,
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Substituting these values in (1) we obtain,

Vy=22¥p, 10up

la
Hou, 1 hyau, 2 iy 3

W
Fle
>

g1
*hy
(i) Inthe cylindrical system :

{1y, u3) =(p & z);hy=1h,=p, =1

_9wp 1dwa dwn

V¥ = 5%t et 3z e

(ii) In the spherical system :
ay A 1aq;r~ 1 dwy~A

= +
ar T 0% tsino oo o

Note : The following vector identities will be useful.

VECTOR CALCULUS

VI-1. Y x(Ve)=0

VI-2 V- (VxF)=0

VI-3. V. (6A) = ¢(V-A)+(Vo-A)

VI-4 VX (0A) = 0(V x )+ (Ve x A)
VI-5. V(A xB) =B (Vx A)-A-(V x B)

- ~ A A
F.et A=Ae,vAye,+Aze,
.o - A A A
divA' = V- A=V - (Ae)+V-(A,6)+V (Aze)

A
We have Vy = El oy
h au]
1 A
V“1=I,;"1+0+0
: 2 2
That is Vrrl _hll' VuZ:h—i, V”3=}%

Also & =&, X & = (h,Vuy) x (hyViy)

A
or ey = hyhy (Vuy xVuy)

.. (1)

L@

(3
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Let us consider only the first term in the R.1LS of (1) and proceed as follows.

V-(Alf'\l) = V-\:A}IIQI%(VHE X Vn3)::, by using (3).

i

v‘(q:?) where ¢ = A]”zhv 7= (Vii, X Vi)

it

¢(V‘zvr_5 + rT?Vq; By wsing V.I- 3]

Alhzha‘:v-(f’uz b "\7::3);,+(Vu2 X Vu_q)-V(A]tha)

M
¢

Alhzh3{Vat3-V X (Vi) =V, V x {Vn});s + FJZE;V(AI;IZ%)

{We have used V.1 -5 for the first ternr and expression (3) for Hie second terni]

A

"
L—-E—l-—a—(/ilhjh}):’\l

= 0+T’_2.h3 .Il] au]

| We have wsed V.1 - 1 for the first term and Hie expression format of Vo
for the second term)

By expanding R.H.S and taking the dot product we get,

1 0)
Vo(Agey) = - S (A )
(Ayey) by hy by aul( RELEY
2l Fal A A Fal A
(e =legey=0000=0
A 1 J

Simildrly V-(A,e,) = H;h;ﬁ,_ B (A, h))

f’

V(ALY = —
(A3e) =50 au,

LA3J11 hz)
Adding these results we have,

i d
T (A6 )4V (Ao )+ V (Agey) = ———— =

Using (1) for the L.H.S. we have, -

{ A1 hz h3 }

Y e 1 d
V-A=divA = h1h2h3zar£1(A1hzh3)
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We deduce expressions for V- Z inthe cylindrical and spherical systemns by using the
expression for the same in the expanded form :

— 1 d
V- A = i b ﬁ_{au (A, hyh )+ (A2h3hl)+ (A hlhz}}

We have (100, 1y u) = (p. @, z)} and .‘fI =1, h2 =p, 113 =1, for the

cylindrical system. Hence we obtain,

VA= i{—-—(pA )+ aq}(A )+i{pA ) {Cylindrical system)
Next, (1, u, w3} = (r, 0, ¢) and iy = 1, .’:2 = r, i1, = rsin@ for the spherical

system. Hence we obtain,

V. ? 1 w(rzc.mBA )+-——{rsml’]4 )+ (rA ) b (Spherical system)
P sind | 97 ¢

Let A=A +A,0 +A3{?‘,

curif:sz_%-) Vx(A }+Vx(A }+\ ><(A3(3) ()

1 dvy A I A

Vy = = =

We have, V Zhl au] Vi h-[(l

te., ‘?1 = I:IVn] R L8

.We shall consider only the first term in the R11LS of (1} and proceed as follows.

V x (A1 ?1 y =V x (A1 h] Vv iy ). by using (2}.

I

¢:TS where ¢ = Ay ko, 2=V i

O(V x n—ﬁ+V¢ x [By using VI - 4]
Ay {V x (V”I)}"'V(A] hl) x Vi,

=0+V (A ) x Vi, - Vx Vo=
{ 4'{\-'1
(1 9 A1 1 9 A S|
=== (A = Al — (A h —
Vi, (hhon 112 B i g A 1’“3}’({111_}'
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where we have used the expression format of V y in the expanded form and (2)

Also, using the fact that

DX e =0 e AT ATEA A h
L]Xt’l—,L2Xel-——t.’3,f,3><tl—c2 we have
A p
-—{)
3 9 2 d
Vx (A 6)=—"-"(Ah)+ (A, k)
171 "1”23”2 171 hlh3au3 1

Similarly by symumetry,

Al A
S T > o
VX Uhe) = g ) g B ()
Al Fal
“©_ 9

-
2 - (A hy)

A
VX(A3c3)- 113 1'5-;1“(,4 h3)+h } auz

Adding these results, L.H.S becomes V x A according to (1) and R.H.S can be put

in the determinant form as follows.

h, é\l h, 92 hy ?3
™ A dJ d dJ
us xa= h_l hz h, aul auz au3

Alh'l AZhZ A3hS

Corotlary
(g, uy U3} = (0 9, 2)

(i) In the cylindrical system :
=1, h = p, h, = 1 and the basic unit vectors are denoted by e ¢, e
]
A Fal A
e, Pe, ¢
- 1 ¢ d J
UxA=—|-— = -
x A pidp d¢ d:=
A pA A,
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(ii) Inthe spherical system : (1, o, Uy) = {1, 8, 0)

A

. R R A Fa
hl =1, h2 =7, h3 = rsin® and the basic unit vectors are denoted by €, Py, €

~
~
™

, rsinOPO i
o_ 1 |2 2 3 |
AI

V x

rsin A

.
|

We know that V2 y =V Vy and we have

dy

1 A
Vy = E-—-—-¢
v Eh]aulel (i

e 3? " A ~
Alsoif A = A} e, + Az e, + A3 €, we have,

VA= Z-'ﬂ(Alhh) Q)

We need to substitute (1) 1in (2). That is by taking A=V v which is equivalent to

. 1 dy - A
taking A, = E;BTI' since A'=2A4 ¢
Ry = ] 3 {1 dy

hl hy ."13 2 du, hl du, !12 hS 1

I

1 z_@, ;‘!2)‘!3 dW
My duy| 8“1J

Thus vZW:hh] d hzhaa\p . d h3-h1aw N P h1hzaw
A du, | hy du | dum,i h du, dug| My duy

ie., Vy = (3
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In  the cylindrical system we have (4, iy t3) = (p, ¢, z) and
h] = 1, .’12 = p, h_‘ = 1.

Vi = = [
g

,)w [16111\14(_@_ 09.‘&?
p Yaelpaoe ) oz P iz

dw aw 1a2w 62141
Tap qur Y

1
o ‘

1
p

Thus V2w=a‘|’+1a‘l’ l azw azw
ap? pdp p? 9¢? Tz

v2y in the spherical system
In the spherical system we have (uy, uy #y) =(r, 8, ¢) and

hy =1, I, = r, 1y = rsin 0. Substituting in the general expression for vy we get,

1 g { > .  awy 2 d W d 1T dy
Vy = - e ¥ i, 2 9 A
v rzsinﬁ{df(r T J"Lae[maae +d¢ sinB d¢

1 20"y dy ’y dy 1 az‘l’]
= 5| sinQ| r\——=+2r -— [+s8in 0 ——= +cos ) — - —
rzsinﬂ[ [ /2 dr_] 2 a6 sinB a¢2J
Thus “viy - L¥,23¥ 19y cotody, 1 oy
o 1 dr 2ge> A 30 Zsinle o

Results at a glance

1. Cylindrical system . (g, y g} =(p, 9 2); b =1, }:2 =p =1
2. Spherical system : (U, iy, u3) ={(r, 8, ¢); hl =1, 112 =, h3 = rsin@

d

<

}

A
13

1
3. gradw:Vw-?—Z o

=
—

I
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4, divdA =V Adhlhzh3 Ju (A1}12h3}
- A A
where A = A} 81+A2€2+A3£’3
A A A
hl e "'2 €5 113 €y
N - 1 d d dJ
5. ,;urlA =VxA= hl h2 h.; aul aﬂz alf3
Ajhy Al Al

hh
2. 1 g 23 dy
6. Vw"h1312h328u1[ h, Bul]

Remark : (“1' ., “3) =(x,y,2z)and hl = 112 = hq = 1 for the cartesian system.
Results (3) to {(6) reduces to the already known definitions in the cartesian system.



